

Describing software in archives

Version 1.0 | September 2021

Contents

Introduction 4

Overview of Software Metadata 5

1.1 Metadata for software preservation 5

1.2 Consistency, automation and interoperability of metadata 6

Metadata representing system requirements 8

2.1 Examples of System requirements supplied by software developers 8

2.2 Types of system requirements 10

2.3 Challenges and Remarks 11

Metadata models for system requirements 12

3.1 PREMIS for system requirements 12

3.1.1 Introduction to PREMIS and computing environments 12

3.1.2 System requirements within PREMIS 13

3.1.3 Use case: QuarkXpress 14

3.1.4 Conclusions and recommendations for the use of PREMIS 17

3.2 Wikidata for system requirement 18

3.2.1 Introduction to Wikidata and preservation metadata 18

3.2.2 System requirements as Wikidata properties 19

3.2.3 System requirements of Wikidata items 21

3.2.4 Conclusions and recommendations for the use of Wikidata for system requirements 24

4. Conclusion and Recommendations 26

Appendixes 27

Appendix 1: Metadata checklist for software preservation 27

Appendix 2: References software preservation metadata 29

Appendix 3: System Requirements described in Wikidata: Software examples. 32

Appendix 3.1 Wikidata examples software 32

Appendix 3.2 Wikidata examples video games 34

Appendix 3.3: Wikidata examples operating system (Windows XP) 37

Credits 39

Preservation Metadata for Software – Describing software in archives

4

Introduction

Software preservation is concerned with the long-term storage of and access to
computer programs in order to keep software alive. As archival objects, software
presents us with many challenges. The notion of software covers a huge variety of
applications that have complex relationships with often specific hard- and
software environments that are maybe considered quite standard at the time of
release, but over time become obsolete. In order for archived software to remain
accessible we need a lot of information about the original environments in which
the software worked at the time of release so that it can be reconstructed, either
by using original hard- and software or, more likely, by setting up an emulation of
the original environment.

This report addresses the challenges of how to capture information about the original environment in
(preservation) metadata. It will first provide an overview of the types of metadata that one needs to
consider when describing software, but also look at standards that will facilitate standardization and
interoperability with systems for accessing software collections.

It will then zoom in on system requirements: lists of properties that inform the user of software about
some basic requirements that the environment must adhere to. The focus on this originally provided
information at the time of publication is intentional. It is up to institutions to decide whether they want
to go one step further and also describe the emulation environments that they want to use for
providing access to software from their collections. However, the emulation environments will change
over time, whereas the system requirements that were originally given will stay the same and should
always help to set-up emulation environments at a certain point in time.

In the following two chapters we first evaluate PREMIS as a model for describing system
requirements. We then explore Wikidata as a potential semantic database that can be used as a
vocabulary. Both of these chapters are exploratory in nature and will critically reflect on the degree to
which PREMIS and Wikidata can play a role in describing system requirements. The final chapter will
bring together the conclusions from the preceding chapters and make recommendations.

Even though a lot of decisions will still need to be made based on the specific situation and goals of
the archiving institution, we hope that this report will be a rich resource that can serve as a starting
point, a check-list with considerations to make the right decisions and by doing so lowering the
threshold for starting or advancing software archiving.

Preservation Metadata for Software – Describing software in archives

5

1. Overview of Software
Metadata

In this chapter we will first provide an overview of aspects that need to be
considered within metadata for the preservation of software. It will also address a
few recommendations for the form that the metadata should take in order to
facilitate efficient and high quality work flows.

1.1 Metadata for software preservation

Metadata can be characterised in different ways. Brown uses the terms “descriptive” and “technical”
metadata1. Descriptive metadata documents each information object. Technical metadata describes
each data object. Instead of the term “technical metadata” we will use the term “preservation
metadata” as it describes its purpose better. Preservation metadata helps to maintain the chain of
custody of a preserved object, to document its version and modifications, to document and automate
preservation actions and to document how an object can be accessed.

The metadata listed in appendix 1 are relevant for software preservation in general. Which one of
these metadatafields are being used depends on the content and purpose of the archive. The
minimum preservation metadata is according to Brown (p.176) beside descriptive metadata:

● Name,
● file size,
● format (PRONOM PID, or a MIME type),
● last modified date,
● checksum value and type

This is a list that fits singular files that are not executable themselves. For executable software, we
need to take into consideration that it needs a specific environment to run. Without information about
this environment in the metadata, the archived software essentially becomes impossible to run.
Besides consisting of executable files, software also most often consists of more than one file. For
these two reasons, we recommend that the above list is extended with the following element:

● system requirements.

Chapter 3 will discuss what the system requirements encompass and which ones are the essential
requirements that need to be described in the metadata.

We marked this list of minimum preservation metadata in appendix 1, as part of a more
comprehensive list of metadata for software archiving. With these minimum metadata, it is not
guaranteed that the software will run or the file can be opened in the future. But they increase the
chance that it will be possible with additional effort to reconstruct the original environment or set up a

1 Brown, Adrian (2013): Practical Digital Preservation : A How-to Guide for Organizations of Any Size, p.155

Preservation Metadata for Software – Describing software in archives

6

compatible emulation environment. In order to preserve the functionality of the software or a complex
digital object, additional metadata such as the description of significant properties, behaviours,
dependencies and interactions might be necessary. Again, a lot depends on the purpose of the
archiving institution and the degree to which they want to facilitate their designated community.

In addition to appendix 1, appendix 2 lists resources and literature about metadata used in digital
preservation in general, but also domain specific resources such as metadata for video games, legacy
software etc. The list is not exhaustive. It includes literature about technical preservation metadata of
disk images and environments, metadata standards, and linked metadata.

1.2 Consistency, automation and interoperability of metadata

Apart from the information that needs to be contained in the metadata, decisions also need to be
made on the way in which the information is described. It is important to achieve the highest quality
and consistency for preservation metadata in order for future users of the archive to be able to
interpret the information even decades after software has gone out of common use. Archives can
increase quality, interoperability and automation by using metadata standards, controlled
vocabularies, linked data registries and tools for automation.

Metadata standards
Metadata standards such as METS and PREMIS also improve the interoperability of preservation
metadata. Interoperability of preservation metadata becomes more and more important in regards to
the effort needed to create a functioning software environment. Even if the environment could not be
shared for copyright reasons, at least its metadata could be shared and would enable other external
users to assemble an environment either manually or automatically. Chapter 4.2 will explain how
system requirements can be modelled in PREMIS.

Controlled vocabularies
There is also the question of the contents of these metadata fields and the form it takes. There are a
number of ways to increase the quality of the metadata by using terminology consistently throughout
a collection, using controlled vocabularies.
A domain specific example for controlled vocabulary is https://gamemetadata.soe.ucsc.edu/ to
describe games. The Software Ontology (SWO) is a resource for describing software tools, their types,
tasks, versions, licences, provenance and associated data2. The software tools listed in the Software
Ontology support mainly scientific research. CodeMeta is another controlled vocabulary to describe
scientific software3.

Linked data registries
Linked data allows the flexible aggregation and interpretation of metadata across different
repositories. It also makes it easier to handle semantic shift. If terms get out of use they can easily be
linked to a new term that is more contemporary. The use of linked data registries can be applied to
various types of metadata:

● Descriptive metadata. For named entities such as producers, locations, titles, etc. linked data
can be used. However, since this is not specific to software preservation we will not include
more information about that in this report.

● Preservation metadata. For preservation metadata a linked data database such as Wikidata
could be used. Wikidata is essentially a linked data version of the online encyclopedia
Wikipedia. Chapter 4.1 will address the use of Wikidata for describing system requirements,
as many softwares have a wikipedia page that often provides useful information for
preservation.

2 Software ontology tool: https://www.ebi.ac.uk/ols/ontologies/swo
3 CodeMeta: minimal metadata schema for science software and code, in JSON and XML
https://github.com/codemeta/codemeta

Preservation Metadata for Software – Describing software in archives

7

Means for automation
To further increase the quality and completeness of the metadata, as well as keeping the workflows of
keeping such repositories manageable, various means for automatic metadata generation can be
used.

● File format identification. Common practice is the use of the PRONOM file format registry. File
identification tools like Siegfried or DROID are based on the PRONOM file registry. This
registry provides persistent links for the items that it contains. This allows for third parties to
persistently link to the PRONOM repository with additional information about specific file
types, rather than generating this information themselves each time they ingest a specific file
format.

● Tools for administrative and provenance metadata generation. Digital preservation systems
such as Archivematica or Preservica produce certain administrative and provenance
metadata automatically. In particular, such systems automatically document preservation
actions executed or triggered through them. As there is no unified description of these
preservation actions between different preservation systems, Addis et al. (2018)4 suggest to
create and use the vocabulary of the preservation action registry (PAR5) that will be integrated
in Archivematica and Preservica. This preservation actions registry is - amongst others -
based on PREMIS events6. This registry was created with in mind more traditional, non-
interactive archival objects. Typical actions are file format normalisation, checksum
calculation, or the creation of a compressed display copy. According to Addis et al. (2018) it is
planned to extend the preservation action registry to software preservation7.

● Machine readable metadata file formats. If metadata is to be used in automated processes it
should be machine readable. There are several metadata file formats such as JSON, CSV,
XML, RDF-XML and JSON-LD for this purpose8. PREMIS and Wikidata can be serialised in such
file formats. Automated processes such as checksum calculation for bit preservation or
normalisation of audiovisual files are already common today. Complexer processes such as
the automatic assembly of a software environment out of single digital objects is not a
practice yet, but will be a goal in the future. Machine readable, precise and complete
preservation metadata is a prerequisite for this.

4 Addis M, Simpson J, Tilbury J, O’Sullivan J, Stokes P (2018) Digital Preservation Interoperability through Preservation Actions
Registries. In: iPres 2018
5 https://parcore.org/
6 https://id.loc.gov/vocabulary/preservation/eventType.html
7 Addis et al. (2018), p.4: “This [the extension of PAR] includes use of techniques such as emulation and containerisation as part
of capturing/preserving the original environment for digital content and maintaining this environment over time. There is
already interesting work in this area, e.g. ReproZip, Singularity, Encapsulator and Research Objects that we would seek to build
upon.
8 Dappert A, Guenther RS, Peyrard S (eds) (2016) Digital Preservation Metadata for Practitioners: Implementing PREMIS. Springer,
Cham. P. 162

Preservation Metadata for Software – Describing software in archives

8

2. Metadata representing
system requirements

Metadata for software preservation has the potential for a seemingly endless scope
depending on the intended use, audience and context of said software. The
possibility for multiple configurations of the same software creates a logistical
problem for institutions looking to document and maintain certain pieces of
software going forward. Regardless of an institution’s plans for future access to
obsolete applications, the key piece of information that needs to be gathered at as
early a stage as possible is the system requirements. System requirements
generally accompany a particular piece of software at the time of publication and
usually contain both a minimum and recommended set of fields that are necessary
for the application to run. These requirements can be a combination of both
hardware components and additional software, an example being that of an
operating system which depends on a certain machine specification and then a
software application which depends on a certain operating system. There can be
some overlap when determining the layered nature of such system requirements
but for the purpose of this investigation we will look at operating systems and
software applications separately, with specific examples.

2.1 Examples of System requirements supplied by software developers

Operating systems form the base layer upon which other software applications can be installed. The
operating system will be referenced in the system requirements for any subsequent software
applications but they also count as software in their own right and should be provided the same care
when it comes to documentation. Below is a table with three common operating systems and their
respective system requirements.9

9 System requirements have been taken from various sources online, either through official documentation or otherwise. Links
for each will be provided but it’s worth highlighting the variations and scope of what is included for each individual example.
Where possible the best source of this information would be directly from the source media documentation or manual.

Preservation Metadata for Software – Describing software in archives

9

Windows XP10 OS X (10.8 Mountain Lion)11 Ubuntu 14.0412

● Pentium 233-megahertz
(MHz) processor or
faster (300 MHz is
recommended)

● At least 64 megabytes
(MB) of RAM (128 MB
is recommended)

● At least 1.5 gigabytes
(GB) of available
space on the hard disk

● CD-ROM or DVD-ROM
drive

● Keyboard and a
Microsoft Mouse or
some other
compatible pointing
device

● Video adapter and
monitor with Super
VGA (800 x 600)or
higher resolution

● Sound card
● Speakers or

headphones

● Mac computer with an Intel
Core 2 Duo, Intel Core i3,
Intel Core i5, Intel Core i7,
or Xeon processor

● 2GB of memory
● 8 GB of disk space
● A working internet

connection
● Latest version of Mac OS X

Lion (10.7.x)

● 1 GHz processor (for
example Intel Celeron
or better)

● 1.5 GB RAM (system
memory)

● 7 GB of free hard drive
space for installation

● Either a CD/DVD drive
or a USB port for the
installer media

● Internet access is
helpful (for installing
updates during the
installation process).

Table 1: Three common operating systems and their system requirements.

From these examples, only Windows XP specifies the need for peripherals (ie. keyboard, mouse,
speakers) but it can generally be assumed that this kind of information would be required for the other
operating systems also. Thus, system requirements defined by software developers may assume tacit
knowledge that might not be obvious 20 years later.

Software applications can include a wide and varied range of system requirements depending on their
purpose. All will generally require a specific operating system and some configuration of hardware
resources to run. The below table details several examples of software applications and the system
requirements.

Microsoft Office 200313 QuarkXpress 9.014 LibreOffice 4.3.115

● Min Operating System
Microsoft Windows
2000 SP3 or later,
Microsoft Windows XP
or later

● Processor Type
Pentium

● Mac OS® 10.5.8
(Leopard®), Mac OS
10.6.4 (Snow
Leopard®) or later

● Tested on Citrix
Hardware

● Mac® Intel® processor

● Linux kernel version
2.6.18 or higher;

● glibc2 version 2.5 or
higher;

● gtk version 2.10.4 or
higher;

10 https://www.24hoursupport.com/windows-xp-hardware-requirements/
11 https://kb.wisc.edu/helpdesk/page.php?id=25648
12 https://wiki.ubuntu.com/TrustyTahr/ReleaseNotes/UbuntuGNOME
13 https://www.cnet.com/products/office-professional-2003/specs/
14 http://files.quark.com/download/documentation/QuarkXPress/9/English/QXP_9.0_ReadMe_en-us.pdf
15 https://sourcedigit.com/12430-install-libreoffice-4-3-1-ubuntu-14-04/

Preservation Metadata for Software – Describing software in archives

10

● Processor Speed
233 Hz

● Min RAM Size
128 MB

● Min Hard Drive Space
400 MB

● 2GB RAM (1GB
minimum)

● 2GB hard disk space
● An Internet connection

for activation
● DVD-ROM drive for

installation from DVD
(not required for
installation from
download)

● Pentium-compatible PC
(Pentium III, Athlon or
more-recent system
recommended);

● 256Mb RAM (512Mb
RAM recommended);

● Up to 1.55Gb available
hard disk space;

● X Server with 1024×768
resolution (higher
resolution
recommended), with at
least 256 colors;

● Gnome 2.16 or higher,
with the gail 1.8.6 and
at-spi 1.7 packages
(required for support
for assistive
technology [AT] tools),
or another compatible
GUI (such as KDE,
among others).

Table 2: Examples of software and their system requirements

These software system requirements supplied by software developers partly repeat the system
requirements necessary for the installation of the operating system.

2.2 Types of system requirements

From the above examples, although not an exhaustive depiction of all possible system requirements,
some key attributes can be identified as being integral parts of the documentation of operating
systems and software applications.

The primary (generic) system requirements relate to the host system on which the application will run:

● Operating system16
● Computer architecture / CPU / instruction set
● Minimum CPU- performance (clock speed, CPU model)
● GPU (minimum video memory, API such as OpenGL, DirectX etc.)
● Minimum system memory (RAM)
● Minimum free storage space
● Dependency on software platform / library / runtime
● Required machine type (for instance desktop computer, laptop, electronic device, mobile device)

Additionally, an operating system or software application might rely on specific peripheral items or
network connection to work.

● External storage devices such as floppy, CD-ROM, DVD-ROM drive17
● Video Adapter (connector for video projector or monitor) and monitor (resolution specified)
● Input devices such as keyboard, mouse, joystick, touch screen
● Sound interfaces such as speakers, headphones, microphones, sound card
● Other peripherals and its ports such as SCSI, RS-232, USB port*
● Internet connection, external web services or data

16 When dealing with a software application
17 Not so much an issue when dealing with disk images of software

Preservation Metadata for Software – Describing software in archives

11

These requirements represent the legacy setup. They depend on the way the software was used in the
past, particularly the requirements for the peripheral hardware such as the monitor type and resolution
and non-standard input and output devices. Artworks or video games are examples that might need
very specific peripherals or hardware set up for authentic display. On the other hand, for a
demonstration of a software such as QuarkXpress, the system requirements for the host computer
suffice.

2.3 Challenges and Remarks

As is apparent from the above examples, for both operating systems and software applications, the
lack of standardisation when it comes to detailing system requirements presents a challenge for
institutions looking to capture this information in a structured way. Using the above recommendations
is a good starting point to focus on and see how it relates to specific software within a collection. As
software, in particular games and other graphically intensive titles, continue to improve the system
requirements may expand to include additional hardware resources such as video and sound cards.

When compiling system requirements for software, particularly obsolete or unsupported titles, it can
often be a challenge to locate a trusted source for such information. The best case scenario would be
to reference the original software documentation or packaging. Where this is not possible, look to
official sources online. Some companies will maintain this type of information on their own website.
Otherwise, and as was the case in this research, there are often secondhand providers of such
information. There are many websites that have captured and made available the system
requirements for common commercial software. In the above examples some of these websites are
referenced but it should be noted that the process consisted of examining and cross checking
multiple sources for the same title, resulting in a more reliable and thorough outcome.

Another challenge facing the documentation of software is the dual nature of system requirements,
often including both a set of minimum requirements and recommended requirements. In general, the
inclusion of both sets has the potential to create information redundancy. While hardware and
resource considerations may need to balance cost and performance for newer titles, it is likely that the
rendering of old software will rely on specific emulators on top of contemporary hardware that easily
outperforms the original requirements. For this reason it makes sense to aim to capture the
recommended system requirements rather than minimum.

Preservation Metadata for Software – Describing software in archives

12

3. Metadata models for
system requirements

This chapter will first evaluate the PREMIS dictionary as a model for describing
system requirements. Using a dictionary such as PREMIS creates clarity, because
the metadata fields have been carefully defined. PREMIS also has potential to
describe relationships between various elements which can clearly display
environment hierarchies. By looking at a specific use case the chapter will
illustrate how to go about deciding which PREMIS fields to use software and
software environments. Another element of structuring software metadata is to
look at standard vocabularies for the contents of the metadata fields. The second
half of this chapter will look at Wikidata and the role that it can play in describing
software.

3.1 PREMIS for system requirements

3.1.1 Introduction to PREMIS and computing environments

The PREMIS Data Dictionary offers a comprehensive resource for institutions looking to implement
preservation metadata within their digital preservation systems18. Since 2005, the standard has seen
several major iterations, the latest being version 3.0. A significant shortfall of previous versions of
PREMIS was how it dealt with computing environments. Environment information is critical to
understanding how a specific file or object can be accessed or rendered correctly. Until PREMIS
version 3.0, the environment semantic unit was rarely used19. Changes to what an environment
actually constitutes within PREMIS and how relationships can be expressed between different
environment components has made it much more viable for institutions to document and preserve
this information to be reused into the future.

PREMIS makes use of semantic units which, in turn, can be linked to 4 distinct entities. An entity is one
of the core components with regard to digital preservation activity and, for PREMIS, they include
Objects, Events, Agents and Rights. For the purpose of this research, and the description of computing
environments, the Objects entity is a prime focus. Objects can further be subdivided into four
subcategories, which are: Intellectual Entity, Representation, File, and Bitstream. An Intellectual Entity
is a distinct intellectual or artistic creation that is considered relevant to a designated community in
the context of digital preservation, such as a particular book, map, photograph, database and even
hardware and software.

18 http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf pg. 1
19 https://www.researchgate.net/publication/262280940_Describing_and_Preserving_Digital_Object_Environments

Preservation Metadata for Software – Describing software in archives

13

3.1.2 System requirements within PREMIS

PREMIS 3.0 offers an approach where each layer of this software/hardware stack can be described as
individual Intellectual Entities and linked to a specific non-environment object20. A non-environment
object can range from a target file that is the focus of a rendering attempt, to a specific representation
of a necessary operating system or piece of software that is stored as a disk image or file
executable21. When linked these can point directly or indirectly to the three key Intellectual Entities that
constitute an environment, as seen in the below diagrams.

Figure 1: An object and its rendering environment: direct link (source: PREMIS Data Dictionary)

Figure 2: An object and its rendering environment: indirect link (source: PREMIS Data Dictionary)

20 https://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf pg. 251
21 https://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf pg. 251

Preservation Metadata for Software – Describing software in archives

14

For the purposes of this investigation, the primary semantic units of interest are those that relate to
the Object and the Environment. Using specific use cases, we will attempt to map the necessary
information to the above diagram, whereby the non-environment object is linked to three distinct
Intellectual Entities. It should be noted that due to the level of complexity involved in documenting all
possible information for each entity, including system requirements, that the most efficient model for
collecting and maintaining environment metadata is a centralized registry (or series of registries)22.
First, we will look at the key semantic units that relate to Objects and Environments and how specific
examples might fit within each.

3.1.3 Use case: QuarkXpress

The use case we will take a look at is that of a QuarkXpress Datafile and its associated environment
stack. The below tables detail the three Intellectual Entities that an example data file can be linked to.
In each case there are Object semantic units and, where applicable, the Relationship semantic units23.
In this example, the environmentDesignationNote semantic unit is used to provide access to an
external source which details the system requirements. Another option for this field is to provide such
information in an unstructured free text way.

Software Application

Semantic Unit Value

1.1 objectIdentifier

 1.1.1 objectIdentifierType local

 1.1.2 objectIdentifierValue 002

1.2 objectCategory intellectual entity

1.9 environmentFunction

 1.9.1 environmentFunctionType software

 1.9.2 environmentFunctionLevel 1

1.9 environmentFunction

 1.9.1 environmentFunctionType software application

 1.9.2 environmentFunctionLevel 2

1.10 environmentDesignation

 1.10.1 environmentName QuarkXpress

 1.10.2 environmentVersion 8.5

 1.10.3 environmentOrigin Quark Inc

 1.10.4 environmentDesignationNote Documentation at
http://files.quark.com/download/docu
mentation/QuarkXPress/8.5/English/Q
XP_8.5_ReadMe_en-us.pdf

22 Data Dictionary for Preservation Metadata: PREMIS version 3.0, p. 255 http://www.loc.gov/standards/premis/v3/premis-3-0-
final.pdf
23 Examples were mapped using the PREMIS 3.0 handbook and the examples given at
https://www.loc.gov/standards/premis/examples.html They do not represent a full PREMIS record but more a look at the
specific semantic units relating to environments.

Preservation Metadata for Software – Describing software in archives

15

 1.10.5 environmentDesignationExtension Possible link to external registry

1.13 relationship

 1.13.1 relationshipType dependency

 1.13.2 relationshipSubType requires

 1.13.3 relatedObjectIdentifier

 1.14.3.1 relatedObjectIdentifierType local

 1.14.3.2 relatedObjectIdentifierValue 003

 1.14.3.3 relatedObjectSequence

 1.13.4 relatedEventIdentifier

 1.13.5 relatedEnvironmentPurpose execution

 1.13.6 relatedEnvironmentCharacteristic

Table 3: Semantic units related to the software application.

Operating System

The following table describes two different operating systems for the installation of QuarkXpress 8.5:
an Apple Macintosh version and a Windows version. Which one is chosen depends on the available
hardware and the use of the software. Other possible operating system versions can be mentioned in
environmentDesignationNote. This field (semantic unit) can also be used to describe what this setup
was or is used for.

Semantic Unit Value

1.1 objectIdentifier

 1.1.1 objectIdentifierType local

 1.1.2 objectIdentifierValue 003

1.2 objectCategory intellectual entity

1.9 environmentFunction

 1.9.1 environmentFunctionType software

 1.9.2 environmentFunctionLevel 1

1.9 environmentFunction

 1.9.1 environmentFunctionType Operating system

 1.9.2 environmentFunctionLevel 2

1.10 environmentDesignation

 1.10.1 environmentName Mac OS

 1.10.2 environmentVersion 10.4.11

Preservation Metadata for Software – Describing software in archives

16

 1.10.3 environmentOrigin Apple Inc

 1.10.4 environmentDesignationNote Other versions: 10.5.8 and 10.6.4

 1.10.5 environmentDesignationExtension Possible link to external registry

1.10 environmentDesignation

 1.10.1 environmentName Windows XP

 1.10.2 environmentVersion Service Pack 3

 1.10.3 environmentOrigin Microsoft

 1.10.4 environmentDesignationNote Other versions: Windows Vista 1.0 and
Windows 7

 1.10.5 environmentDesignationExtension Possible link to external registry

1.13 relationship

 1.13.1 relationshipType dependency

 1.13.2 relationshipSubType requires

 1.13.3 relatedObjectIdentifier

 1.14.3.1 relatedObjectIdentifierType local

 1.14.3.2 relatedObjectIdentifierValue 004

 1.14.3.3 relatedObjectSequence

 1.13.4 relatedEventIdentifier

 1.13.5 relatedEnvironmentPurpose execution

 1.13.6 relatedEnvironmentCharacteristic

Table 4: Semantic units related to the operating system.

Hardware

The following table describes two different hardware setups for the installation of QuarkXpress 8.5: an
Apple Macintosh computer and a Windows PC. Which hardware is chosen depends on the available
hardware, operating system and the use of the software. In this instance the
environmentDesignationNote has been used to document the specific hardware components that are
necessary for this environment.

Semantic Unit Value

1.1 objectIdentifier

 1.1.1 objectIdentifierType local

 1.1.2 objectIdentifierValue 004

1.2 objectCategory intellectual entity

1.9 environmentFunction

Preservation Metadata for Software – Describing software in archives

17

 1.9.1 environmentFunctionType hardware

 1.9.2 environmentFunctionLevel 1

1.9 environmentFunction

 1.9.1 environmentFunctionType hardware architecture

 1.9.2 environmentFunctionLevel 2

1.10 environmentDesignation

 1.10.1 environmentName Macintosh Computer

 1.10.2 environmentVersion n/a

 1.10.3 environmentOrigin Apple Inc

 1.10.4 environmentDesignationNote G5 or faster PowerPC processor or Mac
Intel processor, 1GB RAM (256MB
minimum), 2GB hard disk space.

 1.10.5 environmentDesignationExtension Possible link to external registry

1.10 environmentDesignation

 1.10.1 environmentName Windows PC

 1.10.2 environmentVersion n/a

 1.10.3 environmentOrigin Microsoft

 1.10.4 environmentDesignationNote 1GB RAM (256MB minimum on
Windows XP, 512MB minimum on
Windows Vista), 1GB hard disk space.

 1.10.5 environmentDesignationExtension Possible link to external registry

Table 5: Semantic units related to the hardware environment.

3.1.4 Conclusions and recommendations for the use of PREMIS

Although PREMIS offers a structured and controlled way of describing specific versions of software
and hardware, it is still unclear how to approach these descriptions on a far more granular level. In
many of the examples explored, the detailed system requirements information for software, operating
system and hardware were documented through linked eternal registries through the
environmentDesignationExtension semantic unit. Where PREMIS succeeds is in its ability to document
the hierarchical nature of a computing environment and the relationships between each level.
Though specific system requirements information can be included in free text fields such as
environmentDesignationNote, this may not always be the most sophisticated option. Where possible,
it is always worth looking into controlled vocabularies for this form of data and, as appears to be the
favourable option within PREMIS, create or source an external registry that can hold this information.
First and foremost, institutions and implementers need to make sure that their computing
environment information, including system requirements, is correct. From that point the level of
description and granularity that is actually required of the PREMIS record needs to be explored. It is
perfectly acceptable for PREMIS to capture environment components and relationships at a relatively
high level. For further information relating to specific system requirements there are multiple registries
and sources available that can potentially help. Pronom and Wikidata both offer software and
hardware registries that offer a linked data solution for PREMIS. The following section will take a look
at the latter example, Wikidata.

Preservation Metadata for Software – Describing software in archives

18

3.2 Wikidata for system requirement

3.2.1 Introduction to Wikidata and preservation metadata

Linked Open Data is more and more often used for the documentation of cultural heritage. It creates
relationships between objects in different knowledge bases and enables the aggregation of data
across collections and institutions. An important example for Linked Open Data is Wikidata: a project
by the Wikimedia Foundation which is best known for Wikipedia, a multilingual and collaborative
encyclopedia. Wikidata provides structured data, initially mostly to facilitate multilinguality on
Wikipedia articles, but Wikidata is being used in an increasing number of cases that are not directly
related to Wikipedia. Wikidata, just like Wikipedia, is an open knowledge database which means
everyone can use it and contribute to it. This makes the barrier for entry low for archives.

For many years Linked Data was mainly used for descriptive metadata such as the use of Linked Data
on the Europeana platform24. Wikipedia pages about video games and software mainly contain
descriptive metadata such as the creator of the game or developer of software and the creation date
and type of game or software. In 2017, Thornton et al. made us aware that Wikidata not only contains
descriptive metadata, but also preservation metadata. They created a very useful online tool
presenting both descriptive and preservation metadata of a Wikidata item: https://wikidp.org/.

System requirements are a subset of preservation metadata. In this report, they are understood as the
“original” setup, the hardware and software that was required to run software at the time of its
publication. As described above, these system requirements can sometimes be hard to find and judge
on their quality due to the variety of sources. Wikidata offers the potential to centralise the collection
of such information. Wikidata already contains numerous structured descriptions of software and
hardware items with detailed information about its development and application.

Each Wikidata item has a unique identifier, a number that starts with a capital Q. Each item has
properties, which are uniquely identifiable by a number starting with a capital P. These properties or
semantic units can be browsed in the Wikidata property explorer25. A statement about a Wikidata item,
a so-called information triple, consists of one Wikidata item, one property and one value (see following
example). The value can consist of another Wikidata item, a string, or other data formats26.

Wikidata item (subject) Property / semantic unit
(predicate)

 Value (object)

Firefox (Q698) instance of (P31) web browser (Q6368, Wikidata
item)

Firefox (Q698) software version identifier27
(P348)

10.0.6esr (string)

Firefox (Q698) platform (P400) x86_64 (Q272629, Wikidata
item)

Table 6: Three examples of statements in Wikidata.

24 For instance Linked open data in Europeana: https://pro.europeana.eu/page/linked-open-data accessed June 2021
25 Wikidata property explorer: https://prop-explorer.toolforge.org/ accessed June 2021
26 Data types of Wikidata properties: https://www.wikidata.org/wiki/Help:Data_type accessed June 2021
27 The triple “Firefox (Q698)” “Software version identifier (P348)” “10.0.6esr” means that Firefox has version 10.0.6esr. As
Firefox has multiple versions, the statement has to be iterated for each version.

Preservation Metadata for Software – Describing software in archives

19

As Thornton et al. (2017) missed certain preservation metadata properties, they investigated and
described how properties in Wikidata28 are created. This process is collaborative and prevents the
generation of overlapping or same properties. It also encourages the consistent use of properties. On
the other hand, this process slows down the creation of new properties, which needs to be factored in
when using Wikidata. The following section will explore system requirements as a subset of
preservation metadata in Wikidata.

3.2.2 System requirements as Wikidata properties

This chapter maps the system requirements identified in chapter 2.2 on the Wikidata properties. It lists
Wikidata properties that fully match the identified system requirements, Wikidata properties that are
partly matching with these requirements and finally properties that are needed to describe system
requirements but are still missing from Wikidata.

Matching system requirements

System requirement /
semantic unit

Wikidata property /
semantic unit

Comments

Dependency on software
platform / library /
runtime

P1547
Depends on software

The triple “software A” “depends on
software” “software B” means that
software A requires software B to run.

Operating system P306
Operating system

The triple “software A” “Operating
System” “Operating system B” means
that software A requires Operating
System B to run.

Computer architecture /
CPU / instruction set

P1068: Instruction set
(instruction set on which the
processor architecture is
based)
P880: Central processing
unit (CPU)

CPU performance P2149: Clock speed In combination with P880 this property
describes the CPU performance.

External Storage Device
Type

P4788
Storage device

The triple “software A” “Storage Device”
“Floppy disk” means that software A
requires storage device “Floppy disk”.

Sound interfaces P7501
Audio system

In example “Surface Studio”
(Q27580119), first desktop PC by
Microsoft, this property has the values:
“loudspeaker”, “stereo”, “phone
connector”, “microphone”. This
describes rather input and output
devices.
However, in relation to system
requirements, ”audio system” could
mean a specific sound card or a sound
card with specific features such as a
specific bit depth, sampling frequency,
number of input and output channels.
These single features (properties) do
not exist yet in Wikidata.

28 Thornton K, Cochrane E, Ledoux T, Caron B, Wilson C (2017) Modeling the Domain of Digital Preservation in Wikidata. In:
ipres 2017 (ed) Proceedings

Preservation Metadata for Software – Describing software in archives

20

Graphics processing unit
(GPU)

P2560
Graphics processing unit
(GPU)

P6948
Video system

Often, not a specific brand is required,
but a certain compatibility with a
runtime/API (for instance Open GL,
DirectX, Vulkan etc.) or a specific
feature (output port, video resolution,
performance). The runtime / API
depends on the OS. It can be described
as follows: “GPU A” has “instruction set”
“GPU API”, for instance: “Radeon
HD5750” has “instruction set” “OpenGL”
“version 4.4” (qualifier “software version
identifier”)
For video games with specific hardware
property P6948 (video system) can be
used.

Table 7: System requirements matching system requirements in chapter 2.2

Partly matching Wikidata properties

System requirement /
semantic unit

Wikidata property /
semantic unit

Comments

Minimum Free Storage
Space

P3575
Data size (size of a software,
dataset, neural network, or
individual file)

The data size of the software might
be smaller than the required
minimum disk space. It would be
better to have an additional property
“minimum installation space”

Minimum RAM P2928
Memory capacity

Memory capacity is usually
maximum capacity. Hence, a
property “minimum RAM” would be
useful.

Minimum Internet Speed P6711: data transfer rate
(transfer speed through a bus
or a communication medium)

Data transfer rate is not limited to
the internet. If it was used with the
(missing) property “internet access
required” P6711 could be used as a
qualifier.

Peripherals: Input Device
Type

P479: Input method

P2935: Connector

P9192: Sensors

Wikidata does not differentiate
between standard and non-standard
peripherals. Instead it uses input
method and output method. Input
method is much broader than just
the mouse and keyboard. An input
method can also encompass
microphones and other sensors. And
it can mean input through user
interface or input through command
line. The latter use of “Input method”
is not a system requirement29.
If non-standard, the connector of the
input device can be described with
P2935.

29 In appendix 3.1, example Adobe Flash (Q165658), “input method” (with the values “graphical user interface”, and “script”) is
not used as a system requirement. In appendix 3.2, example World of Warcraft (Q131007), “input method” (with the values
“keyboard” and “mouse”) is used as a system requirement.

Preservation Metadata for Software – Describing software in archives

21

For sensors the property P9192
should be used.

Peripherals: Output
device

P5196: Output method

P2935: Connector

Wikidata does not differentiate
between standard and non-standard
peripherals. Instead it uses input
method and output method. Output
method is much broader than just
the monitor or projector. It can also
encompass a printer, sound, and
other sensors. And it can mean that
a program uses a standard output or
produces a file output. The latter use
of “Output method” is not a system
requirement.
If non-standard, the connector of the
output device can be described with
P2935.

Table 8: System requirements partly matching with system requirements as listed in chapter 2.2

Missing Wikidata properties
At this moment, Wikidata does not provide any properties for the following metadata fields:

● Required Machine Type (Required type of computing machine necessary to operate software,
for instance laptop, mobile phone, electronic device) [Wikidata item]

● Display Resolution vertical (number of pixels) [number]
● Display Resolution horizontal (number of pixels) [number]
● Internet Access Required [yes or no]30
● Minimum installation space in MB [number]
● Minimum RAM in GB [number]

3.2.3 System requirements of Wikidata items

This section analyses how system requirements are described for individual Wikidata items today
(May 2021) and how this could be improved upon. Appendix 3 contains examples of Wikidata items
such as software, video games and operating systems. It lists their Wikidata system requirements and
other preservation metadata expressed as Wikidata properties. These other preservation metadata are
listed to provide an impression of what preservation metadata are collected in Wikidata, how they are
used and to give context to the system requirements. The following table provides an example how
system requirements of the Firefox web browser31 are documented in Wikidata:

30 There is also no Wikidata property “requires” that could be used in a triple like: “Software A” “requires” “internet”
31 https://wikidp.org/Q698/preview accessed 2021/05/11

Preservation Metadata for Software – Describing software in archives

22

Wikipedia
item
(subject)

 property
(predicate)

object / value

Firefox
(Q698)

Operating system
(P306)

Linux (Q388), Microsoft Windows (Q1406), macOS (Q14116),
Firefox OS (Q550303), Android (Q94), iOS (Q48493), FreeBSD
(Q34236)

Firefox
(Q698)

Platform (P400) IA-32 (Q262238), x86_64 (Q272629), ARM (Q218864)

Firefox
(Q698)

Depends on
software (P1547)

Yasm (Q2547156), Netscape portable runtime (Q3509073),
…
(about 30 entries)

Table 9: Properties of Firefox specifying system requirements for Firefox

The problem with the Wikipedia entry of Firefox (Q698) above is that the properties are not version
specific, they apply to all versions at once. However, system requirements differ from version to
version: For instance, Firefox 3 requires Windows 2000 or Windows XP, Firefox 90 requires Windows
10. The following table shows, how Firefox versions are described in Wikidata:

Wikipedia
item
(subject)

 property
(predicate)

object / value qualifier

Firefox
(Q698)

P348: Software
version identifier

Versions 1 to 90 are
listed as strings. The
versions are not
Wikidata items (they
do not have a unique
identifier)

Each version is described with
several qualifiers such as
P577: publication date P548:
version type

Firefox
(Q698)

P747: Has edition or
translation

Firefox Nightly
(Q56316099), Firefox
3.6 (Q2615631)

Table 10: Properties of Firefox specifying Firefox versions

The software versions listed under P348 (software version identifier) cannot take Wikidata items as a
value, only strings. Hence, software versions entered in P348 are not linked to Wikidata items and
therefore cannot be described individually. In contrast, P747 (has edition or translation) lists software
versions with their own Wikidata identifier. In the case of Firefox, over 90 versions are described with
P348 (software version identifier) while P747 (has edition or translation) describes just two versions.
Consequently, first, the Wikidata pages for the single Firefox versions (or groups of versions with the
same system requirements) would have to be created before the system requirements could be added
in a useful way.

In the examples mentioned in appendix 3.1, except for Firefox, none of the described softwares
(Firefox, Adobe Flash, Adobe Flash Player, yEd, QuarkXpress) and video games (Commodore 64
Games System, Rollerboard, 3D Tanx, Menace, Grachten Racer, World of Warcraft) specified software
versions with separate unique identifiers (using the property P747, “has edition or translation”). While
certain video games might not have software versions as they are one entity with their hardware, the
mentioned softwares have many versions and hence version dependent system requirements.
Thornton et al. 2017 described a similar problem where one Wikidata item represents several
semantic entities: In their case, it was not several software versions represented by one Wikidata item,
but a software and its associated file format represented by a single Wikidata item.

Preservation Metadata for Software – Describing software in archives

23

This leads to the question: what kind of software objects does Wikidata (potentially) describe.
Information is only eligible for Wikidata if it qualifies according to the notability guidelines of the
platform32. One such criterion is for the object to have an equivalent page on Wikipedia or one of the
other Wikimedia projects. For an object or topic to have its own Wikipedia page a topic needs to have
received “significant coverage in reliable sources that are independent of the subject”. Since this is not
usually the case for specific versions of software, it is unlikely that these would make it onto
Wikipedia, and by extension to Wikidata. Also, non-commercial and not widely distributed software
objects created by researchers, artists, designers or small game producers are not described in
Wikipedia and their description might not be desirable from a Wikipedia point of view. Therefore,
Wikidata might have its limitations when it comes to covering software objects that have limited
notability. The criteria also state however that information is also permitted if it “fulfills a structural
need, for example: it is needed to make statements made in other items more useful.” This seems to
create some space for the type of information we are here concerned with.

A related question is, how specific one can get with the description of software objects. A software
object might be part of a specific setup that an archive wants to preserve, whether it be an artwork
installation or a specific use of a software. Hence, the system requirements for a specific use of a
software might differ from the generic system requirements of this software object. This is very
difficult if not impossible to describe with Wikidata. First, such a specific setup most likely does not
have its own Wikidata item. Secondly, even if it had, the specific system requirements of a software
would contradict the generic ones. It could be argued that such a contradiction could be prevented by
using qualifiers. However, the first qualifier might be used to qualify a system requirement as in the
following hypothetical example, but Wikidata only allows one qualifier level. Nested qualifiers are not
possible.

Wikipedia
item
(subject)

 property
(predicate)

object / value qualifier value

Firefox
(Q698)

Internet access
required
(Property does
not exist yet)

[yes or no]
value does not exist for
Firefox in Wikidata

P6711: Data
transfer rate

value does not
exist for Firefox
in Wikidata

Table 11: Wikidata system requirements using a qualifier. It is not possible to add another qualifier level to specify
requirements for a specific use case (or a specific Firefox version).

Another challenge of Wikipedia/Wikidata is the consistent use of properties for different software
objects. For instance, it is not clear when to use the property “platform” (P400), when to use the
property “operating system” (P306) and when to use the property “depends on software” (P1547). In
Firefox (Q698, see table 9 and WindowsXP (Q11248, see appendix 3.3) “platform” is used to describe
computer architectures. In Adobe Flash Player (Q857177) “platform” is filled in with “Microsoft
Windows”, hence an operating system. For yEd, a graphics software, “platform” is filled in with “Java
Virtual Machine” which could instead be described as “depends on software” (P1547). Conventions
such as not to use the property “platform” (P400) or “instruction set” (P1068) if an operating system is
specified that implies a certain computer architecture would support a consistent use of properties.

32 https://www.wikidata.org/wiki/Wikidata:Notability

Preservation Metadata for Software – Describing software in archives

24

A similar issue poses the description of relationships, hierarchies and structures between Wikidata
items. There are many similar properties defining relationships and it is sometimes difficult to know
which properties to use or search for. The relationship class - sub-class (P279) is used to describe the
hierarchies between classes (a “web browser” is a subclass of “application”). Instance of (P31) means
that a Wikidata item is an instance of a certain class (“Firefox” is an instance of the class “web
browser”). The property ”has edition or translation” (P747) can be used if a software has a version
(“Firefox” has edition or translation “Firefox 3.6”). The consistent use of these relationships depends
on the users.

If a search result does not provide the expected results, it is not always because the search did not
encompass all the possible (correctly or incorrectly used) properties. Often, the relationships between
software versions are not described at all. For instance, Windows XP (Q11248) has several editions
and service packs. When querying Wikidata for all the instances (P31) and (or) sub-classes (P279)
and/or editions (P747) of Windows XP, only two editions come up:Windows XP Professional x64
Edition (Q245793) and Windows XP 64-Bit Edition (Q6072277). All other editions described in
Wikipedia such as Windows XP Home (Q26161904), Windows XP Media Center Edition (Q2643528) or
Windows XP Starter (Q10393871) are not linked to Windows XP (see also appendix 3.3).

Finally, when going through the Wikidata entries of the video game examples in appendix 3.2,
especially the ones running on a Windows computer, it becomes clear how little preservation
metadata is filled in and how much is still missing. Information about the necessary video cards,
graphics APIs or video card performance is missing in all the examples. Also requirements for display
equipment or joysticks cannot be found.

3.2.4 Conclusions and recommendations for the use of Wikidata for system requirements

Even though Wikidata has potential for the description of system requirements, using it in practice
would still be very experimental at this stage. The description of most software items is incomplete,
be it on a structural level (creation of Wikidata items, relationships between Wikidata items, consistent
use of properties) or content (values for system requirement properties) level. From the section above
it becomes clear that the data structure of Wikidata is a work in progress and still needs a big and
continuous effort for preservation metadata, not only to describe new software, but also for very
commonly used software of the past. It would need a big effort to complete Wikipedia entries,
introduce new properties and create new Wikidata items (separate Wikipedia pages) for software
versions.

Thornton et al. 2017 explain the collaborative processes to adapt and develop the data structure of
Wikidata. When working with Wikidata, these collaborative processes need to be taken into account
and a certain flexibility timewise but also regarding the data model is a precondition. The great
advantage of using Wikidata are the synergies generated for the whole software preservation and
Wikipedia community in terms of knowledge production and access (structuring and sharing software
preservation metadata). Finally, the use of Linked Data allows to adapt quickly to changing semantics
of the technical and descriptive preservation vocabulary.

Preservation Metadata for Software – Describing software in archives

25

The biggest question mark is to which degree Wikidata would accept the creation of separate pages
for software versions. Thornton et al. 2017 mention that Wikipedia has different objectives than the
preservation community and that these might be incompatible. While any user can create a new
Wikidata item, for instance for a specific version of a software application, it is the Wikipedia
community that ultimately decides whether the information contributed fulfills the requirements of
notability or whether it fulfills a structural need as described above. Using Wikidata for preservation
metadata might introduce a level of uncertainty which archives are not willing to accept.

If it is not possible or desirable to use Wikidata, it is an option to just use the Linked Data software of
Wikidata, called Wikibase33, to create one’s own data model. Rhizome, an institution collecting netart
in New York, can serve as an example. They created their own preservation metadata model34,
focussed on the preservation of netart and their collection, as they were not able to adapt the Wikidata
model to their needs. In this way, they can still link certain properties (semantic units) and items
(values) to Wikidata, but they have the full freedom to apply their own data model.

33 Homepage of the wikibase software: https://wikiba.se/ accessed June 2021
34 Rhizome’s artbase data model: https://sites.rhizome.org/artbase-re-design/data-models.html accessed June 2021

Preservation Metadata for Software – Describing software in archives

26

4. Conclusion and
Recommendations

In this report we explored the ideas and solutions that can be found with regards to metadata for
software preservation. It is a fragmented field, which can be difficult to navigate. Software
preservation doesn’t happen at such a scale that best practices have already been fully established.
The most comprehensive way to describe software would be to include in the description information
about the environment that can run the software in the present. If the software is somewhat older, this
is likely to be an emulation environment. However, emulation environments will change over time, so it
will require a lot of monitoring and adjusting metadata to keep track of developments. This effort is
only justified if an archive wants to provide the highest service level with regards to providing access
to its software collection. In this report we have instead focused on describing the system
requirements that were provided at the time of publication. These will remain the same and can
always be used to construct an (emulation) environment for access.

The PREMIS metadata dictionary offers possibilities for describing software, software versions and
the relations they have with their environment. However, the level of detail that can be provided in
PREMIS in a structured way is limited. It is therefore necessary to explore the possibilities for
referencing external registries that do include such detail.

We looked at Wikidata to see to which degree it can function as such an external registry. Although
Wikidata offers a lot of the functionality that one might need, it would at present be quite an
experimental endeavour to use Wikidata in practice. A lot of the information needed is probably
missing, and adding it to the database comes with a level of uncertainty about the degree to which the
community would accept such specific information. Also, the relational properties have not been
carefully defined and are therefore used in inconsistent way.

Wikibase, the database software on which Wikidata is based, can be set up as a separate instance:
including Wikidata information where desired, but also giving the hosting organization full control over
which information it contains.

For every archive that is looking to start the preservation of software, a careful analysis is required of
their specific context and the purposes they have with software preservation.The appendices that
have been included are there to aid archives to dive deeper into the subject matter and make their own
choices based on their needs. In this report we explored the ideas and solutions that can be found
with regards to metadata for software preservation. It is a fragmented field, which can be difficult to
navigate. Software preservation doesn’t happen at such a scale that best practices have already been
fully established.

Preservation Metadata for Software – Describing software in archives

27

Appendices
Appendix 1: Metadata checklist for software preservation

Minimum metadata for bit preservation are marked with a cross (x)

Discovery (descriptive metadata)

● x Description of game or software (what does it do?)
● x What is the name / alternative name of the software?
● What was the software used for?
● Who used it?
● When was it popular?
● When was it developed?
● Who developed it?
● What version is it? Potential reference or link to versioning control system repository or to

existing software repository.
● Part of a package or series
● FRBR35 hierarchy: Work (is realised through) Expression (is embodied in) Manifestation (is

exemplified by) Item
● Replaces, supersedes other software

Behaviour / Significant properties (preservation metadata)

● “Original” behaviour: What does / did it do? What does / did it look and feel like? Description of
interactivity, behaviour, functionality.

● Significant properties are characteristics of an object that should be maintained through
preservation actions. Which properties of the “original behaviour” have to be maintained?
Which limitations of functionality / interactivity / behaviour are accepted (editable, read-only,
fully or partly functional etc.)?

● Necessary I/O hardware (for instance mouse, joystick, type of keyboard, touchscreen, printer,
speakers, etc.)

● Documentation of significant properties, for instance with screenshots and screencasts. This
field can refer to the user instructions in “Object structure and technical description →
Ancillary material”

● What knowledge does the user need to interact with the object? This field can refer to the user
instructions in “Object structure and technical description → Ancillary material”

● Does the object change through interaction with the user? Will each user session be reset or
can the user save this state?

● Does the user have to be able to import and export data?

Provenance, chain of custody (preservation metadata)

● Original media where it was submitted on
● Who submitted?
● When was it submitted?

35 https://en.wikipedia.org/wiki/Functional_Requirements_for_Bibliographic_Records

Preservation Metadata for Software – Describing software in archives

28

● Submission context? (For instance “is part of collection” A)
● Derivatives (tree of derivatives, is parent of / is child of)
● How were the derivatives produced (preservation actions / events → refer to registry of

preservation actions)
● x Last modified date
● Additional description of changes of derivatives, in particular in the case of snapshots of a

virtual machine / emulation (why was the snapshot made, what has changed compared to the
previous snapshot)

Object structure and technical description (preservation metadata)

● Structure of composite objects (parts, how are they linked, subsystems)
● x Size of (composite) object
● x File format of input and output files of software (reference to file format registries such as

PRONOM)
● File formats of input and output files of a software (reference to file format registries such as

PRONOM)
● Functional description of important files or folders. For instance whether a file is a source code

or an executable, installer or package
● Ancillary material from the software vendor or producer like user manual and installation

instructions. It is linked to the software object for instance by the relationship “is documented
by”.

● Ancillary material produced by the heritage institution: user instructions given by the heritage
institution, documentation of significant properties (screenshots, screencasts).It is linked to
the software object for instance by the relationship “is documented by”.

● Other ancillary material

Dependencies (preservation metadata, representation metadata)

● x Required computing hardware (system requirements)
● x Required software environment (system requirements)
● Other dependencies (data sources, protocols etc.)
● Required emulator
● Configurations

Administrative

● x Unique identifier
● Rights management (software licenses)
● Internal and external access management
● x Monitoring (bit preservation, checksum, checksum type)
● Preservation planning
● Quality control after preservation actions (functional tests, significant properties)
● Documentation of preservation actions / workflow (s. also “Provenance, chain of custody”)

Preservation Metadata for Software – Describing software in archives

29

Appendix 2: References software preservation metadata

This Appendix contains a list of literature and other resources that will hopefully help readers to dive
further into topics that are more specific to their usecase. Software preservation can take many forms,
and the requirements for metadata will take shape according to the context in which preservation
happens.

Digital preservation metadata

● Brown, Adrian (2013): Practical Digital Preservation : A How-to Guide for Organizations of Any
Size. Chapter about metadata p.155 ff

● Dappert A, Guenther RS, Peyrard S (eds) (2016) Digital Preservation Metadata for Practitioners:
Implementing PREMIS. Springer, Cham

● The DPC Digital Preservation Handbook, chapter about “Metadata and Documentation”
https://www.dpconline.org/handbook/organisational-activities/metadata-and-documentation

Domain specific metadata (discovery, significant properties)

Software (mainly in the context of Science / Research)
● Software ontology tool: https://www.ebi.ac.uk/ols/ontologies/swo mainly (but not

limited) to the bioinformatics community.
● CodeMeta: minimal metadata schema for science software and code, in JSON and

XML: https://github.com/codemeta/codemeta
● Acquisition process of software: https://www.softwareheritage.org/swhap/
● Software citation principles: Smith AM, Katz DS, Niemeyer KE, (None) (2016)

Software citation principles. PeerJ Computer Science https://peerj.com/articles/cs-
86/

● Source code of software: https://schema.org/SoftwareSourceCode
● Software Application https://schema.org/SoftwareApplication

Video games

● GAMECIP The game metadata and citation project (2017)
https://gamecip.soe.ucsc.edu/. This project created a controlled vocabulary for
computer game platforms and their media formats. They can be accessed here:
● List of computer game platforms (software and hardware):

https://gamemetadata.soe.ucsc.edu/platform
● List of media formats for computer games:

https://gamemetadata.soe.ucsc.edu/media
● Wikidata: proposal to integrate the controlled vocabulary of GAMECIP in wikidata:

https://www.wikidata.org/wiki/Wikidata:Property_proposal/GAMECIP_platform_ID
● Giovanni Carta, about significant properties of video games: “Metadata and video

games emulation: an effective bond to achieve authentic preservation?” (2017)
https://www.deepdyve.com/lp/emerald-publishing/metadata-and-video-games-
emulation-an-effective-bond-to-achieve-meBq7kyR9F

Media art

● Media art research thesaurus: https://vocabularyserver.com/mediaart/
● Taxonomy of interactive art. Kwastek, Katja; Spörl, Ingrid (2009):

http://www.kwastek.de/pdf/taxonomy_IA_200706.pdf

Objects that need software to be interpreted
● Spreadsheets: Veenendaal R. et al. (2019) Significant Properties of Spreadsheets: An

update on the work of the Open Preservation Foundation's Archives Interest Group.
In: iPres2019 (ed) iPres2019: Conference Proceedings, Amsterdam

Preservation Metadata for Software – Describing software in archives

30

Technical preservation metadata

● Metadata for disk images: Chassanoff A, Woods K, Lee C (2016) Chapter 8. Digital Preservation
Metadata Practice for Disk Image Access. In: Dappert A, Guenther RS, Peyrard S (eds) Digital
Preservation Metadata for Practitioners: Implementing PREMIS. Springer, Cham, pp 99–109

● Metadata for disk images: Ensom T., (2021): Disk imaging report - Tate, Time-based media
conservation. https://www.tate.org.uk/about-us/projects/software-based-art-preservation

● Metadata for disk images:Meister (2017): Generate Filesystem Metadata as DFXML
https://confluence.educopia.org/display/BC/Generate+Filesystem+Metadata+as+DFXML

● Metadata for emulation: Delve J, Anderson D (2012) The Trustworthy Online Technical
Environment Metadata database - TOTEM. Kölner Beiträge zu einer geisteswissenschaftlichen
Fachinformatik, vol 4. Kovač, Hamburg

● Description of Environments in PREMIS http://www.loc.gov/standards/premis/v3/premis-3-0-
figures.pdf

● Identification of containers: Blog about how to create a container signature file (Spencer, 2016):
https://openpreservation.org/blogs/droid-container-signature-files-what-they-are-and-how-to-
create-them-a-template-and-an-example-or-few/

● Metadata model of the Emulation as a Service Infrastructure, Version5. Spreadsheet with
detailed metadata: Bartczak, Jeremy. (2020, June 26). University of Virginia: EaaSI Metadata
Model V5. Software Preservation Network.
https://www.softwarepreservationnetwork.org/university-of-virginia-eaasi-metadata-model-
v5/

Metadata standardisation

● Preservation Action Registry (PAR) https://parcore.org/
● Preservation Action Registry (PAR): Addis M, Simpson J, Tilbury J, O’Sullivan J, Stokes P (2018)

Digital Preservation Interoperability through Preservation Actions Registries. In: iPres 2018
(ed) iPres 2018

● PRONOM file format registry: https://www.nationalarchives.gov.uk/PRONOM/Default.aspx
● PREMIS: Dappert A, Guenther RS, Peyrard S (eds) (2016) Digital Preservation Metadata for

Practitioners: Implementing PREMIS. Springer, Cham
● PREMIS in combination with METS: Guenther R (2010) Metadata to Support Long-Term

Preservation of Digital Assets: PREMIS and its use with METS. In: iPres 2010 (ed):
Proceedings of the 7th International Conference on Preservation of Digital Objects, Vienna

Conceptual model for versions and instantiations

● IFLA Study Group on the Functional Requirements for Bibliographic Records (2009). Functional
Requirements for Bibliographic Records. Series: IFLA Series on Bibliographic Control 19.
Publisher: Munich: K.G. Saur Verlag, 1998. https://www.ifla.org/publications/functional-
requirements-for-bibliographic-records

● Rossenova L, Espenschied D, de Wild K (2019) Provenance for internet art.: Using the W3C
PROV data model. In: iPres2019 (ed) iPres2019: Conference Proceedings, Amsterdam, pp
297–304. https://osf.io/6xd4g/

Preservation Metadata for Software – Describing software in archives

31

Linked metadata

● Thornton K, Cochrane E, Ledoux T, Caron B, Wilson C (2017) Modeling the Domain of Digital
Preservation in Wikidata. In: ipres 2017 (ed) iPres 2017: Proceedings

● Thornton K, Seals-Nutt K (2018) Wikidata for Digital Preservation. In: iPres 2018 (ed) iPres 2018
● Hooland S van, Verborgh R (2014) Linked Data for Libraries, Archives and Museums: How to

clean, link and publish your metadata. Facet Publishing, London
● Wikidata. https://wikidp.org/ provides the digital preservation metadata that is registered in

Wikidata about an object
● Specific information about the use of Wikidata for the domain informatics / software

preservation https://www.wikidata.org/wiki/Wikidata:WikiProject_Informatics
● Data model of the Rhizome artbase (based on the software Wikibase, but with their own data

model): https://sites.rhizome.org/artbase-re-design/data-models.html

Preservation Metadata for Software – Describing software in archives

32

Appendix 3: System Requirements described in Wikidata: Software
examples.

Appendix 3 lists a few examples of softwares to demonstrate how the system requirements are
described as Wikidata and what other preservation metadata Wikidata provides. Other preservation
metadata are necessary to understand better the relationships between the software objects. Hence,
structural metadata such as “subclass of (P279)” “instance of (P31)” “software versions (P348)”, “has
edition or translation (P747)”,“Topic's main category (P910)”, “use (P366)”, “commons category
(P373)”, “different from (P1889)”, “followed by (P156)”, “follows (P155)”, “based on (P144)”, and “part
of the series (P179)” are listed in “other metadata”.

Metadata that are important to provide the right software environment for a file such as readable
(P1072) and writable (P1073) file format are also listed in “other metadata”. To be able to create an
environment, it can be helpful to know the “package management system (P3033)” of a software. This
is included in “other metadata”.

The examples are extracted from Wikidata on 11 May 2021. They are divided in software (appendix
3.1), video games (appendix 3.2) and operating systems (appendix 3.3)

Appendix 3.1 Wikidata examples software

Firefox (Q698)
https://wikidp.org/Q698/preview

System requirements

Operating system (P306): Linux (Q388), Microsoft Windows (Q1406), macOS (Q14116),
Firefox OS (Q550303), Android (Q94), iOS (Q48493), FreeBSD (Q34236)
Platform (P400): IA-32 (Q262238), x86_64 (Q272629), ARM (Q218864)
Depends on software (P1547): Yasm (Q2547156), Netscape portable runtime (Q3509073),
Network Security Services (Q7000904), libpng (Q838041), Hunspell (Q176291), …
Expat (Q2074084) (about 30 entries)

Other metadata

Readable file format (P1072): Web Open Font Format, version 2 (Q18413771), Mork
(Q6912474), JSON (Q2063), WebP (Q62617958), Ogg (Q188199), Vorbis (Q11885120),
WebM (Q309440), VP9 (Q3815169), Opus (Q1466199), MP3 (Q42591). H.264/MPEG-4
AVC (Q212633), Cascading Style Sheets (Q46441), Brotli (Q18205644), gzip (Q283647),

Writable file format (P1073): Free Lossless Audio Codec (Q27881556)
Instance of (P31): news aggregator (Q498267), VoIP software (Q15614021), web browser
(Q6368), FTP client (Q3503189), mobile browser (Q845620), free software (Q341)
Software versions (P348): summary: 1.0 to 90.0
Software engine (P408): Gecko (Q487834), Quantum (Q28457708), SpiderMonkey
(Q1848400)
Has edition or translation (P747): Firefox Nightly (Q56316099), Firefox 3.6 (Q2615631)
Topic's main category (P910) Category: Firefox (Q8459937)
Copyright license (P275): Mozilla Public License, version 2.0 (Q25428413), GNU General
Public License (Q7603), GNU Lesser General Public License (Q192897)
Package management system (P3033): dpkg (Q305892), RPM Package Manager
(Q492650), Flatpak (Q22661286), Portage (Q908542)

Preservation Metadata for Software – Describing software in archives

33

Adobe Flash (Q165658):
https://wikidp.org/Q165658/preview

System requirements

Operating system (P306): Microsoft Windows (Q1406), Linux (Q388), macOS (Q14116)

Other metadata

Readable file format (P1072): FLA (Q28756039), Small Web Format (Q594447), FLV
(Q27967488)
Writable file format (P1073): FLA (Q28756039)
Input method36 (P479): graphical user interface (Q782543), script (Q30581237)
Instance of (P31): application (Q166142), multimedia framework (Q1186471), software
engine (Q2622299), vector graphics editor (Q1155404), computing platform (Q241317)
Followed by (P156): Adobe Animate (Q4291129)
Copyright license (P275) proprietary license (Q3238057)
Use (P366): 2D animation software (Q23442338)
Commons category (P373): Adobe Flash
Topic's main category (P910): Category:Adobe Flash (Q8221662)
Different from (P1889): Adobe Shockwave (Q1061837), Adobe Flash Player (Q857177)

Adobe Flash Player (Q857177)
https://wikidp.org/Q857177/preview

System requirements

Operating system (P306): BlackBerry Tablet OS (Q2160367), Android (Q94), Microsoft
Windows (Q1406), macOS (Q14116), Linux (Q388), Solaris (Q14646), Chrome OS
(Q79531), BSD (Q58636917)
Platform (P400): Microsoft Windows (Q1406)

Other metadata

Readable file format (P1072): Small Web Format (Q594447)
Software version identifier (P348): various 32.x.x versions, but no older versions
Instance of (P31): media player (Q210337), browser extension (Q874411), multimedia
framework (Q1186471)
Use (P366): run-time system (Q1004415)
Different from (P1889): Adobe Shockwave Player (Q28955963), Adobe Flash (Q165658)
Copyright license (P275): freeware (Q178285)

yEd (Q2598628)
https://wikidp.org/Q2598628/preview

System requirements

Operating system (P306): cross-platform

36 The way “Input method” is used here, is not a system requirement. But it can be used as a system requirement if it is used as a
hardware requirement (as for instance in “World of Warcraft” where input method is “computer keyboard (Q250)” or “mouse
(Q7987)”)

Preservation Metadata for Software – Describing software in archives

34

Platform (P400): Java Virtual Machine

Other metadata

Readable File format (P1072): GraphML (Q1543325), Apache Ant (Q385970)
Writable file format (P1073): GraphML (Q1543325), Portable Network Graphics (Q178051),
Scalable Vector Graphics (Q2078), Graph Modelling Language (Q1543319), Trivial Graph
Format (Q4051789)
Instance of (P31) : freeware (Q178285), diagramming software (Q3307487), proprietary
software (Q218616)
software version identifier (P348): (Summary: versions 3.16 to 3.20)
Use (P366): diagram (Q959962)
Copyright license (P275): end-user license agreement (Q725920)

QuarkXPress (Q678036)
https://wikidp.org/Q678036/preview

System requirements

Operating system (P306): macOS (Q14116), Microsoft Windows (Q1406)

Other metadata

Readable file format (P1072): Quark Xpress Data File, version 9 (Q47524799), Quark
Xpress Data File (Q51913355), Quark Xpress Report File (Q60371443), Quark Xpress Data
File, version 10 (Q60371646), Quark Xpress Data File, version 6 (Q60372734), Adobe
InDesign Document (Q59914742), QuarkXPress Document 3.1 (Q89344774), QuarkXPress
Document 4 (Q89347372), QuarkXPress Project 7 (Q89777428), QuarkXPress Project 8
(Q89897874), QuarkXPress Project 9.1 (Q90559776), QuarkXPress Project 2015
(Q90801872), QuarkXPress Project 2016 (Q91226396), QuarkXPress Project 2017
(Q91322362), QuarkXPress Project 2018 (Q92204260), QuarkXPress Project 2019
(Q92744208), QuarkXPress Document 1-2 (Q100705816), QuarkXPress Document 3
(Q100706036), QuarkXPress Document 3.2 (Q100706066), QuarkXPress Project 9.2
(Q100706334), QuarkXPress Project 10.1 (Q100707279)
Writable file format (P1073): Quark Xpress Data File, version 9 (Q47524799), Quark Xpress
Data File (Q51913355), EPUB (Q475488), Quark Xpress Report File (Q60371443), Quark
Xpress Data File, version 10 (Q60371646), Quark Xpress Data File, version 6 (Q60372734),
QuarkXPress Project 7 (Q89777428), QuarkXPress Project 8 (Q89897874),QuarkXPress
Project 2015 (Q90801872)
Software version identifier (P348): 2015
Instance of (P31); software (Q7397), desktop publishing software (Q29364197)
Use (P366): desktop publishing (Q188610)
Copyright license (P275): proprietary license (Q3238057)

Preservation Metadata for Software – Describing software in archives

35

Appendix 3.2 Wikidata examples video games

Commodore 64 Games System (Q1115883) (video game console)
https://wikidp.org/Q1115883/preview

System requirements

-

Other metadata

Instance of (P31): model (Q10929058)
Subclass of (P279): home video game console (Q17589470)
Part of (P361): third generation of video game consoles (Q129758)
Follows (P155): Commodore TV Game 2000K and Commodore TV Game 3000H (Q370911)
Followed by (P156): CDTV (Q955368)

Commodore 64 (Q99775) (home computer)
https://wikidp.org/Q99775/preview

System requirements

Operating system (P306) Commodore BASIC V2 (Q1115899)
CPU (P880): MOS Technology 6510 (Q378246)
Memory capacity (P2928): 64
Has part (P527): primary memory (Q11140433), MOS Technology VIC-II (Q1639225), Commodore
Datasette (Q767429), MOS Technology CIA (Q350467)

Other metadata

Instance of (P31) computer model (Q55990535)
Follows (P155) Commodore VIC-20 (Q918232)
Followed by (P156) Commodore 128 (Q1115919), Commodore 64C (Q12744958)
Subclass of (P279) home computer (Q473708)
Commons category (P373) Commodore 64
Topic's main category (P910) Category:Commodore 64 (Q7573297)

Rollerboard (Video game on Commodore 64 platform)
(https://www.regionaalarchiefalkmaar.nl/games)
not registered in Wikidata.

3D Tanx (Q55566) (Video Game on Commodore 64 computer from 1982)
https://wikidp.org/Q55566/preview

System requirements

Platform (P400): ZX Spectrum (Q23882)

Other metadata

Instance of (P31): video game (Q7889)

Preservation Metadata for Software – Describing software in archives

36

Game mode (P404): single-player video game (Q208850)

Menace (Q1749543) (Video Game on Commodore 64 computer from 1988)
https://wikidp.org/Q1749543/preview

System requirements

Platform (P400): Commodore Amiga (Q100047), Atari ST (Q627302), Commodore 64
(Q99775), DOS (Q170434)

Other metadata

Instance of (P31): video game (Q7889)
Game mode (P404): single-player video game (Q208850)
Distribution format (P437): floppy disk (Q5293)

Grachten Racer (Q13646402) (PC-Video game from 2000)
https://wikidp.org/Q13646402/preview

System requirements

Platform (P400): Microsoft Windows (Q1406)

Other metadata

Instance of (P31): video game (Q7889)

World of Warcraft (Q131007) (PC-Video game from 2004)
https://wikidp.org/Q131007/preview

System requirements

Platform (P400): Microsoft Windows (Q1406), macOS (Q14116)
Input method (P479): computer keyboard (Q250), mouse (Q7987)
Data size (P3575): 88.437

Other metadata

Game mode (P404): multiplayer video game (Q6895044)
Distribution format (P437): digital distribution (Q269415)

Software version identifier (P348): 8.3, 9.0.2
Instance of (P31): video game (Q7889)
Part of the series (P179): Microsoft Windows (Q1406), macOS (Q14116)

Copyright license (P275): proprietary license (Q3238057)
Commons category (P373): World of Warcraft
Uses (P2283): ray tracing (Q619942)

37 No unit is provided in the case of World of Warcraft. However, for the property “data size”, not only a number, but also a unit
needs to be provided in Wikidata, otherwise the entry is unclear.

Preservation Metadata for Software – Describing software in archives

37

Appendix 3.3: Wikidata examples operating system (Windows XP)

Windows XP (Q11248)

https://wikidp.org/Q11248/preview

System requirements

Platform (P400): IA-32 (Q262238), x86_64 (Q272629), IA-64 (Q916994)

Other metadata

Readable file format (P1072): Windows Portable Executable file format, 32-bit
(Q47455466)
Software version identifier (P348): 5.1.2600.5687 (only one version registered in
Wikidata!)
Instance of (P31): Operating system (Q9135)
Topic's main category (P910): Category:Windows XP (Q7368007)
Commons category (P373): Microsoft Windows XP
Based on (P144): Windows 2000 (Q483881)
Follows (P155): Windows Me (Q484892), Windows 2000 (Q483881)
Followed by (P156): Windows Vista (Q11230)
Part of the series (P179): Windows NT (Q486487)
Subclass of (P279): Windows NT (Q486487), Microsoft Windows (Q1406)
Edition or translation of (P629): Microsoft Windows (Q1406)
Copyright license (P275): shareware (Q185534), commercial software (Q1340793),
volume licensing (Q4016359), Microsoft Software Assurance (Q16251378)

Windows XP Professional x64 Edition (Q245793)

https://wikidp.org/Q245793/preview

System requirements

Platform (P400): x86_64 (Q272629)

Other metadata

Instance of (P31): Operating system (Q9135)
Based on (P144): Windows Server 2003 (Q11246)
Part of the series (P179): Windows NT (Q486487)
Subclass of (P279) Windows XP (Q11248), Windows Server 2003 (Q11246)
Edition or translation of (P629): Microsoft Windows (Q1406)

Windows XP 64-Bit Edition (Q6072277)
https://wikidp.org/Q6072277/preview

System requirements

-

Other metadata

Instance of (P31): Operating system (Q9135)

Preservation Metadata for Software – Describing software in archives

38

Subclass of (P279) Windows XP (Q11248)
Edition or translation of (P629): Microsoft Windows (Q1406)

Windows XP Home (Q26161904)
https://wikidp.org/Q26161904/preview

System requirements

-

Other metadata

Instance of (P31): operating system (Q9135)

Windows XP Media Center Edition (Q2643528)

https://wikidp.org/Q2643528/preview

System requirements

-

Other metadata

Instance of (P31): proprietary software (Q218616), operating system (Q9135)
Edition or translation of (P629): Microsoft Windows (Q1406)

Windows XP Starter (Q10393871)
https://wikidp.org/Q10393871/preview

System requirements

-

Other metadata

-

Preservation Metadata for Software – Describing software in archives

39

Credits

Authors

Eoin O’Donohoe
Preservation Analyst - the Netherlands Institute for Sound and Vision

Claudia Röck
Preservation Analyst - the Netherlands Institute for Sound and Vision

Jesse de Vos
Product Manager - the Netherlands Institute for Sound and Vision

This report was published by the Dutch Digital Heritage Network (NDE) in September, 2021.
For further information, see: netwerkdigitaalerfgoed.nl

If you have any queries or comments about the contents of the report, please feel free to email us at:
info@netwerkdigitaalerfgoed.nl

