A large-scale description of men and women speaking-time in media is presented, based on the analysis of about 700.000 hours of French audiovisual documents, broadcasted from 2001 to 2018 on 22 TV channels and 21 radio stations. Speaking-time is described using Women Speaking Time Percentage (WSTP), which is estimated using automatic speaker gender detection algorithms, based on acoustic machine learning models. WSTP variations are presented across channels, years, hours, and regions. Results show that men speak twice as much as women on TV and on radio in 2018, and that they used to speak three times longer than women in 2004. We also show only one radio station out of the 43 channels considered is associated to a WSTP larger than 50%. Lastly, we show that WSTP is lower during high-audience time-slots on private channels. This work constitutes a massive gender equality study based on the automatic analysis of audiovisual material and offers concrete perspectives for monitoring gender equality in media.The software used for the analysis has been released in open-source, and the detailed results obtained have been released in open-data.

Gender Equality, Digital Humanities, Machine Learning, Machine Listening, Speaker Gender Detection, Women speaking time percentage, Audiovisual description, open-data
Netherlands Institute for Sound and Vision
VIEW Journal
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
VIEW Journal of European Television History and Culture; Vol 7, No 14 (2018): Audiovisual & Digital Humanities; 103-122

Doukhan, David, Poels, Géraldine, Rezgui, Zohra, & Carrive, Jean. (2018). Describing Gender Equality in French Audiovisual Streams with a Deep Learning Approach. VIEW Journal, 7(14), 103–122. doi:10.18146/2213-0969.2018.jethc156